Page 1 of 6

Aledyne

engineering
Touchscreen Toolkit for LabVIEW Help

June 2014

The Touchscreen Toolkit for LabVIEW Toolkit provides two touch interfaces: a LabVIEW interface to
the Windows Touch API and to Touch-Base Ltd's Universal Pointer Device Driver (UPDD).

The Windows Touch/Gesture (WTGQ) interface does not require any additional drivers and relies on the
build in HID drivers in Windows to properly interface with the touchscreen hardware. The LabVIEW
toolkit installs a hook in Windows so that the WM_TOUCH and WM_GESTURE messages are
intercepted before being received by the LabVIEW window that initialized the driver. Once intercepted,
the touches can be interpreted and filtered and messages are sent back to the LabVIEW application via a
user event in the same manner that is done with the UPDD driver. The WTG interface is compatible
with both Windows 7 and Windows 8 via the WM_TOUCH and WM_GESTURE messages. Currently,
the WTG interface does not expose the Windows 8 only WM_POINTER message. Since Windows 8
reports touch messages directly to the windows process instead of the message queue, the mouse pointer
cannot be disabled in Windows 8.

The UPDD interface requires a separate driver (sold separately) which supports multiple Operating
Systems and many different touchscreens. This is required for integration with NI standalone chassis,
such as the cDAQ-9139. Refer to http://www.touch-base.com/ or contact sales@aledyne.com. Touch-
Base is a leading developer and supplier of touchscreen and pointer device drivers. The Universal
Pointer Device Driver is in use on many thousands of devices worldwide. This API provides a
LabVIEW wrapper around the UPDD driver and a set of LabVIEW vi's in order to initialize the driver
and receive events and touch data when any touchscreen connected is touched.

The Touchscreen Toolkit provides the following features:

Direct integration with the UPDD driver from Touch-Base AND the Windows 7 Touch API
User event registration and triggering when a touch occurs on any configured touch screen
Multiple touch screens can be used simultaneously

Swipe, zoom, rotate, and pan gestures are recognized and reported with multi-touch hardware
Multiple touch points (up to 16) are reported with multi-touch hardware

Ability to disable mouse pointer so touches do not control mouse movement

Touch coordinates are reported from one or more screens when mouse pointer is disabled
Receive Windows gesture messages as reported by WM_TOUCH and WM_GESTURE

Please visit http://touch-base.com/ to purchase and download the UPDD driver for your hardware if
using the UPDD APIs in the toolkit. The downloaded UPDD driver will include a TBApi.dll and a
UPDD device specific DIl which must both be copied into the directory of this toolkit
(<LabVIEW>\vi.lib\Aledyne Engineering\Touchscreen Toolkit). Note that this toolkit references the
32-bit version of the driver so if running on a 64-bit OS, TBApi32.dll will need to be used from the
driver installation package and renamed to TBApi.dll when copying to the Toolkit directory.

Page 2 of 6

Where to Start?

Windows 7 or 8:

If you have a Windows 7 or 8 machine with a built in multi-touch touchscreen, or have an external
Windows supported touchscreen, like the MIMO Magic Touch, start with the following examples:

Raw Touch coordinates: WTG_Example.vi demonstrates how the Windows 7 touch (WM_TOUCH)
and gesture (WM_GESTURE) messages are captured by the Touchscreen toolkit to monitor multi-touch
events from Windows 7. This is the simplest example and a good starting point to see how to interface
with the API and see how data is reported from the toolkit.

Touch enabled Graph: WTG_GraphExample.vi demonstrates how to use the touchscreen toolkit to
manipulate the x and y scales of a waveform graph. This example detects the zoom, rotate, and pan
gestures from the toolkit and modifies the scales of the graph control.

Touch enabled Picture Control: WTG_PictureExample.vi demonstrates how to enable the Windows 7
Gesture Engine and messaging built into the WM_GESTURE message. This example connects to the
touch driver, receives user events that are triggered off of WM_GESTURE and returns gesture data for
Zoom and Rotate and uses the data to manipulate a picture control.

Detection of Multiple Buttons: WTG_MultiButtonExample.vi demonstrates how to use the
touchscreen toolkit to detect touch on multiple areas of interest on the front panel simultaneously using
the Windows 7 Touch API. A typical application would be to detect touch of two buttons
simultaneously to ensure operators hands are away from machinery before starting a dangerous piece of
machinery.

Recognizing multiple gestures in an event handler: WTG_Gestures Example.vi demonstrates how to
use the touchscreen toolkit to process touch and gesture coordinates using the Windows Touch API.
This example detects the swipe, zoom, rotate, and pan gestures from the toolkit and shows how to use
them to switch images in an image control, rotate and zoom an image, zoom a graph, and detect multiple
button presses simultaneously.

Windows Embedded Standard 7 or Windows XP:

Page 3 of 6

If you are integrating touch to a cDAQ-9138/9139, cRIO-9081/9082 running Windows Embedded
Standard 7 (WES7) or you are integrating touch to a Windows XP system, you will need to purchase an
additional UPDD touch driver specifically for your touch monitor (sold separately). Please contact
sales@aledyne.com for support on the appropriate driver and installation.

Raw Touch coordinates: UPDD Example.vi demonstrates how to use the touchscreen toolkit to
initialize and monitor events, and get a list of detected devices from the UPDD driver. This is the
simplest example and a good starting point to see how to interface with the API and see how data is
reported from the toolkit.

Recognizing multiple gestures in an event handler: UPDD Gestures Example.vi demonstrates how
to use the touchscreen toolkit to process touch and gesture coordinates using the Windows Touch API.
This example detects the swipe, zoom, rotate, and pan gestures from the toolkit and shows how to use
them to switch images in an image control, rotate and zoom an image, zoom a graph, and detect multiple
button presses simultaneously.

Touch Data Elements Reported by the Touchscreen Toolkit:

Type: Defines if the event reported is an XY event, such as dragging a finger or stylus across the screen,
or a Button event, which happens once on a depression or removal of a finger or stylus on the screen.
When a button event occurs, the XY coordinates of the button press or release will also be reported for
easy processing. Following a button press, the application will continually receive XY Events with
position data until the button is released.
type

A Event

Button Event

Tick: Relative time in ticks that the data was read from the UPDD driver.

Rawx: Raw x value of button press/release or drag received from the touch controller normalized to 0-
4000 as reported by the UPDD driver. For the WTG API this is the screen coordinate in physical pixels.

Rawy: Raw x value of button press/release or drag received from the touch controller normalized to 0-
4000 as reported by the UPDD driver. For the WTG API this is the screen coordinate in physical pixels.

Calx: The corresponding calibrated x value as reported by the UPDD driver. For the WTG API this is
mostly unused except for in Zoom/Rotate mode it provides the center point of the two touches so that
the application can zoom about the center point.

Caly: The corresponding calibrated y value as reported by the UPDD driver. For the WTG API this is
mostly unused except for in Zoom/Rotate mode it provides the center point of the two touches so that
the application can zoom about the center point.

Page 4 of 6

Left: The state of the left button where 0 is released and 1 is pressed. The left button is used for
touches. This data is only valid for Button Events.

Right: The state of the right button where 0 is released and 1 is pressed. This data is only valid for
Button Events.

Timed: Reserved for Future Use.

DeviceHandle: Used to identify the monitor/device that was pressed in a multi-monitor system. For the
UPDD API, this should be used with UPDD_GetDevicelndex.vi to identify which monitor is reporting
the data. For the WTG API, this is a unique identifier for the monitor that reported the touch event. In a
single monitor environment, this is not needed.

Stylus: This is the pen/stylus number in a multi-touch application. If the monitor being used supports
multi-touch, up to 16 independent pens will be reported based on the capabilities of the hardware. This
can be used to create custom gestures using a capacitive touchscreen monitor. In a resistive touch
application that only supports one coordinate, this will always be 0.

GestureType: The toolkit has built in gesture recognition for swiping, zooming, rotating, and panning.
Swipe only requires single touch monitors but zoom, rotate, and pan will only work in multi-touch
environments. Zoom and rotate are reported as one gesture but with independent values because zoom
and rotate are interpreted as one gesture when using two fingers on a display. The application can
monitor either Zoom or Rotate if it is only desired to perform one of the functions. The Windows
Zoom, Windows Rotate, and Windows Pan are gesture events triggered by the Windows
WM_GESTURE message when Windows specific gestures are enabled using the WTG API. If Pan and
Zoom/Rotate are enabled, when the pan threshold is exceeded the Pan gesture will be cancelled and the
gesture engine will transition to the Zoom/Rotate gesture if its zoom threshold is exceeded. If the
distance between the two touch points is then reduced lower than the zoom threshold, the gesture will be
canceled and if the distance is less than the pan threshold, the gesture engine will transition back to the
Pan gesture.

GestureType
4 Mone

Swipe Right
Swipe Left
Swipe Down
Swipe Up
Zoom/Rotate
Pan

Windows Zoom
Windows Rotate

Windows Pan

Page 5 of 6

Zoom In/Out Swipe Rotate Pan

Swipe: Reports the difference in X movement for left to right and right to left swipe gestures and the
difference in Y movement for down to up and up to down gestures. This is not reported until the gesture
threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or
WTG_SetGestureThreshold.vi.

Zoom: Reports the zoom scale in a multi-touch environment when pinching and expanding motions are
detected on the monitor. This is reported as a percentage of the initial spacing between the two touch
points for the Aledyne gesture. So if two touch points are initially spaced 1 inch apart and are moved
apart to 2 inches, a value of 200% will be reported. The threshold distance to which both fingers must
be apart from one another before considering the gesture a zoom can be configured using
UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi. If a zoom gesture is being reported
and the fingers move together again within the set threshold, the zoom gesture will be cancelled. If pan
is enabled it will go back to pan mode. For WM_GESTURE (Windows Zoom), the zoom quantity is
reported as a distance in pixels between the two touch points. The quantity is not converted to a
percentage of the initial spacing and, if this is required, it must be done in the user's application. Refer
to WTG_PictureExample.vi for an example.

Rotate: When one finger is rotated around the second finger which remains a pivot point, rotation is
detected. The angle of rotation reported correlates to the rotation angle of one finger with respect to the
other. The maximum reported angles are -90 to 90 degrees. If the rotation is not sensitive enough in the
application, this number can simply be scaled or multiplied by some factor to make the rotation more
sensitive to movement of the fingers on the screen.

ZoomType: Returns if the zoom orientation is horizontal or vertical based on touch positioning. If the
relative angle is greater than 45 degrees from the horizontal axis, a vertical zoom type is returned.

FoomType
4 Mo foom
Vertical Zoom

Harizontal Zoom

PanXDelta: Reports the difference in X movement for left to right and right to left pan gestures. For
right to left gestures this will be reported as a negative value. This is not reported until the gesture
threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or
WTG_SetGestureThreshold.vi. If a pan is started and then the fingers are moved apart to commence a
zoom gesture, once the pan threshold is exceeded, the gesture engine will automatically cancel the pan
and will commence the zoom.

PanYDelta: Reports the difference in Y movement for down to up and up to pan gestures. For down to
up gestures this will be reported as a negative value. This is not reported until the gesture threshold is

Page 6 of 6

passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or
WTG_SetGestureThreshold.vi. If a pan is started and then the fingers are moved apart to commence a
zoom gesture, once the pan threshold is exceeded, the gesture engine will automatically cancel the pan
and will commence the zoom.

Refer to "<LabVIEW>\examples\Aledyne Engineering\Touchscreen Toolkit\" for examples of how to
interface to the UPDD and WTG driver.

To provide feedback or request support, contact us here.

© 2012-2014 Aledyne Engineering. All rights reserved.

Page 1 of 15

Aledyne

engineering

Windows Touch/Gestures Interface Help
June 2014

Part of the Touchscreen Toolkit provides a LabVIEW interface to the Windows 7 touch API. Since Windows 7 already provides support for many touchscreen monitors over
a standard HID interface, the WTG APIs of the toolkit provide a means of hooking into the Windows 7 Window Touch (WM_TOUCH) and gesture (WM_GESTURE)
messages. The WTG interface is compatible with both Windows 7 and Windows 8 via the WM_TOUCH and WM_GESTURE messages. Currently, the WTG interface does
not expose the Windows 8 only WM _POINTER message. Since Windows 8 reports touch messages directly to the windows process instead of the message queue, the mouse
pointer cannot be disabled in Windows 8.

The WTG API provides the following features:

Direct integration with Windows 7 touch API

User event registration and triggering when a touch occurs on any connected touch screen

Multiple touch screens can be used simultaneously

Custom swipe, zoom, rotate, and pan gestures are recognized and reported with multi-touch hardware if WM_TOUCH is enabled
Ability to disable mouse pointer so touches do not trigger left/right button events

The standard Windows 7 WM_GESTURE messages can be hooked including zoom, rotate, and pan.

Please visit the Microsoft MSDN pages for above for details on the Windows touch API.
Touch Data Elements Reported by the Toolkit:

Type: Defines if the event reported is an XY event, such as dragging a finger or stylus across the screen, or a Button event, which happens once on a depression or removal of
a finger or stylus on the screen. When a button event occurs, the XY coordinates of the button press or release will also be reported for easy processing. Following a button
press, the application will continually receive XY Events with position data until the button is released.

type

XY Event
Button Event

Tick: Relative time in ticks that the data was read from the UPDD driver.

Rawx: Raw x value of button press/release or drag received from the touch controller normalized to 0-4000 as reported by the UPDD driver. For the WTG API this is the
screen coordinate in physical pixels.

Rawy: Raw x value of button press/release or drag received from the touch controller normalized to 0-4000 as reported by the UPDD driver. For the WTG API this is the
screen coordinate in physical pixels.

Calx: The corresponding calibrated x value as reported by the UPDD driver. For the WTG API this is mostly unused except for in Zoom/Rotate mode it provides the center
point of the two touches so that the application can zoom about the center point.

Caly: The corresponding calibrated y value as reported by the UPDD driver. For the WTG API this is mostly unused except for in Zoom/Rotate mode it provides the center
point of the two touches so that the application can zoom about the center point.

Left: The state of the left button where 0 is released and 1 is pressed. The left button is used for touches. This data is only valid for Button Events.
Right: The state of the right button where 0 is released and 1 is pressed. This data is only valid for Button Events.
Timed: Reserved for Future Use.

DeviceHandle: Used to identify the monitor/device that was pressed in a multi-monitor system. For the UPDD API, this should be used with UPDD_GetDevicelndex.vi to
identify which monitor is reporting the data. For the WTG API, this is a unique identifier for the monitor that reported the touch event. In a single monitor environment, this
is not needed.

Stylus: This is the pen/stylus number in a multi-touch application. If the monitor being used supports multi-touch, up to 16 independent pens will be reported based on the
capabilities of the hardware. This can be used to create custom gestures using a capacitive touchscreen monitor. In a resistive touch application that only supports one
coordinate, this will always be 0.

GestureType: The toolkit has built in gesture recognition for swiping, zooming, rotating, and panning. Swipe only requires single touch monitors but zoom, rotate, and pan
will only work in multi-touch environments. Zoom and rotate are reported as one gesture but with independent values because zoom and rotate are interpreted as one gesture
when using two fingers on a display. The application can monitor either Zoom or Rotate if it is only desired to perform one of the functions. The Windows Zoom, Windows
Rotate, and Windows Pan are gesture events triggered by the Windows WM_GESTURE message when Windows specific gestures are enabled using the WTG APL. If Pan
and Zoom/Rotate are enabled, when the pan threshold is exceeded the Pan gesture will be cancelled and the gesture engine will transition to the Zoom/Rotate gesture if its
zoom threshold is exceeded. If the distance between the two touch points is then reduced lower than the zoom threshold, the gesture will be canceled and if the distance is less
than the pan threshold, the gesture engine will transition back to the Pan gesture.

Page 2 of 15

GestureType
None

Swipe Right
Swipe Left
Swipe Down
Swipe Up
Zoom/Rotate
Pan
Windows Zoom
Windows Rotate
Windows Pan

Zoom In/Out Swipe Rotate Pan

Swipe: Reports the difference in X movement for left to right and right to left swipe gestures and the difference in Y movement for down to up and up to down gestures. This
is not reported until the gesture threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi.

Zoom: Reports the zoom scale in a multi-touch environment when pinching and expanding motions are detected on the monitor. This is reported as a percentage of the initial
spacing between the two touch points for the Aledyne gesture. So if two touch points are initially spaced 1 inch apart and are moved apart to 2 inches, a value of 200% will
be reported. The threshold distance to which both fingers must be apart from one another before considering the gesture a zoom can be configured using
UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi. If a zoom gesture is being reported and the fingers move together again within the set threshold, the zoom
gesture will be cancelled. If pan is enabled it will go back to pan mode. For WM_GESTURE (Windows Zoom), the zoom quantity is reported as a distance in pixels between
the two touch points. The quantity is not converted to a percentage of the initial spacing and, if this is required, it must be done in the user's application. Refer to
WTG_PictureExample.vi for an example.

Rotate: When one finger is rotated around the second finger which remains a pivot point, rotation is detected. The angle of rotation reported correlates to the rotation angle of
one finger with respect to the other. The maximum reported angles are -90 to 90 degrees. If the rotation is not sensitive enough in the application, this number can simply be
scaled or multiplied by some factor to make the rotation more sensitive to movement of the fingers on the screen.

ZoomType: Returns if the zoom orientation is horizontal or vertical based on touch positioning. If the relative angle is greater than 45 degrees from the horizontal axis, a
vertical zoom type is returned.

ZoomType |
J Mo Zoom
Vertical Zoom
Horizontal Zoom

PanXDelta: Reports the difference in X movement for left to right and right to left pan gestures. For right to left gestures this will be reported as a negative value. This is not
reported until the gesture threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi. If a pan is started
and then the fingers are moved apart to commence a zoom gesture, once the pan threshold is exceeded, the gesture engine will automatically cancel the pan and will
commence the zoom.

PanYDelta: Reports the difference in Y movement for down to up and up to pan gestures. For down to up gestures this will be reported as a negative value. This is not
reported until the gesture threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi. If a pan is started
and then the fingers are moved apart to commence a zoom gesture, once the pan threshold is exceeded, the gesture engine will automatically cancel the pan and will
commence the zoom.

Refer to "<LabVIEW>\examples\Aledyne Engineering\UPDD Toolkit\" for examples of how to interface to the UPDD and WTG driver.
To provide feedback or request support, contact us here.

© 2012-2014 Aledyne Engineering. All rights reserved.

WTG _Initialize VI

Installed With: LabVIEW

Creates a user event and sends the reference to the WTG driver for registration of the callback. Also sets a Windows hook to receive WM_TOUCH and WM_GESTURE
messages that are directed to LabVIEW from Windows. The Window that is specified is registered to receive touch messages from. If no window name is specified, the
highest caller in the call chain is used for the touch enabled window. By default RegisterTouchWindow() is called which will redirect WM_TOUCH messages but will stop
WM_GESTURE messages. To enable Windows 7 gestures, this can be done through WTG_GestureFilter.vi. By default with WM_TOUCH enabled, the Aledyne gesture
engine is enabled. The interval at which user events are reported can also be specified by ReportInterval. If this is set to 1, every received Windows event will be passed to
LabVIEW. If this is 2, then every other event will be passed to LabVIEW. This can be increased to reduce the amount of interrupts generated by the driver. By default this is
setto 1.

Window Name
Reportinterval
error in (no error) ===

Event Registration Refnum
refnumOut
== grror out

iz Window Name define the window to register for touches. If no window name is specified, the highest caller in the call chain is used for the touch enabled window. If
multiple windows need to be enabled for touch, it is recommended that each window Initializes, then Closes its connection to the touch API before another window

Page 3 of 15

registers for touch since only one window at a time can be registered for touch.

ReportInterval defines how often to send touch messages from the driver up to the LabVIEW user event. By default this is 1 so that every message is sent. Messages
are sent about every 5-10ms. This can be increased so that LabVIEW is not interrupted too often. The maximum is 10.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

g]l;; lsa(;l;l(“lce string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

Event Registration Refnum is user event registration that should be wired to an events structure's event registration terminal.

refnumOut is the reference to the driver instance.

WTG_MousePointerDisable VI

Installed With: LabVIEW

When using the Windows 7 touch API VIs, this will force discarding of mouse button events for touch related messages that are sent to the owning window. The discarded
messages include WM_LBUTTONDOWN, WM_LBUTTONUP, WM_RBUTTONDOWN, and WM_RBUTTONUP.

refnum ;@; refnumQut
error in (no error) error out
refnum is the reference to the driver instance.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

displayed.
The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

BT The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
G The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
refnumOut is the reference to the UPDD instance.

WTG_MousePointerEnable VI

Installed With: LabVIEW

When using the Windows 7 touch API Vls, this will re-enable mouse button events for touch related messages that are sent to the owning window.
refnum ;@; refnumQut

error in (no error) error out

refnum is the reference to the driver instance.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

displayed.
The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)

Page 4 of 15

gives more information about the error displayed.
The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
= .

displayed.
refnumOut is the reference to the UPDD instance.

WTG_GestureFilter VI

Installed With: LabVIEW

Calls into the Windows Touch/Gesture driver and enables/disables gesture features. If Windows 7 Gestures are enabled, all other custom gesture types are disabled and the
Windows WM_GESTURE messages are reported to the application. This also disables the WM_TOUCH messages the Windows reports so the application will stop receiving
touch coordinate data. If Windows 7 Gestures are disaabled, the Aledyne custom gesture engine becomes enabled and multi-touch data is reported.

refnum refnumOut
Gesture Filter =

error in (no error) ==

error out

Gesture Filter

W7 defines if Windows 7 Gestures are enabled. If true, Windows 7 WM_GESTURE messages are received and WM_TOUCH and the Aledyne gesture engine
is disabled. This setting does not do anything for the UPDD instance. Windows 7 gestures are automatically disabled and this setting is ignored for UPDD. This
can only be enabled for the WTG instance.
Swipe defines if the Aledyne swipe gesture is enabled. This can only be enabled if W7 is disabled.
Zoom/Rotate defines if the Aledyne zoom/rotate gesture is enabled. This can only be enabled if W7 is disabled.
Pan defines if the Aledyne pan gesture is enabled. This can only be enabled if W7 is disabled.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.
The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
=3
displayed.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

displayed.
refnum is the reference to the driver instance.
refnumOut is the reference to the driver instance.

WTG_SetGestureThreshold VI

Installed With: LabVIEW

Sets the thresholds of gestures for finer tuning of gesture response. Currently, the only gestures that allow fine tuning are the Aledyne Swipe and Pan. These thresholds are
defined in pixels as reported by the WM_TOUCH coordinates.

For Swipe, when a single finger is swiped across the screen, once it has moved greater than the specified distance in pixels, the API will start registering the gesture. The
default for the Swipe threshold is 100 pixels.

For Pan, when two fingers are moved across the screen, and the two fingers start with a distance apart that is less than the specified distance in pixels, the API will start
registering the gesture. The default for the Pan threshold is 100 pixels.

For Zoom, when a zoom is started by holding two fingers close together, the zoom percentage will stay at 100% until the distance the fingers are moved apart is greater than
the specified distance in pixels. This prevents the start zoom to be really small when a zoom is started causing a large zoom percentage for a small movement apart. The
default for the Zoom threshold is 100 pixels.

refnum refnumOut
GestureType
Threshold error out
error in (no error)

refnum is the reference to the driver instance.

GestureType is the type of gesture to be configured. Currently, the only gesture thresholds that can be configured are the Aledyne swipe and pan.

Threshold is the threshold to set for the gesture specified. The default for swipe is 100 pixels and the default for pan is 100 pixels.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)

gives more information about the error displayed.

Page 5 of 15

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

g]l;; lsa(;l;l(“lce string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

G The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
refnumOut is the reference to the UPDD instance.

WTG_Close VI

Installed With: LabVIEW

Unregisters the event and closes the connection to WTG driver. Also unhooks the Windows hook for monitoring WM messages.

Event Registration Refnum
refnum

. error out
error in (no error)

Event Registration Refnum
refnum is the reference to the driver instance created by UPDD_Initialize.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

= The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

G The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

WTG_Scale VI

Installed With: LabVIEW

Scales the input x-y coordinates received from the windows touch driver to map to the coordinates of a front panel VI and pane. Note that the top-left coordinate of the touch
panel will be mapped to the top-left coordinate of the VI pane referenced.

x
y

viRef

paneRef

error in (no errar)

== grror out

viRef is a reference to the top level vi to map physical coordinates to panel coordinates.

x is the physical x coordinate reported by the Windows Touch API.

y is the physical y coordinate reported by the Windows Touch APL

paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

= 557 The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

Page 6 of 15

displayed.
x_scaled is the scaled x LabVIEW panel coordinate.
y_scaled is the scaled y LabVIEW panel coordinate.

PanGraph VI

Installed With: LabVIEW

Controls panning of a graph by scaling the min and max ranges of the x and y scales relative to the physical x/y coordinates provides to the input. If the x/y coordinates input
map to a graph coordinate outside the current range, the graph will not be panned. Panning will only be executed if the touches are within the bounds of the graph control.
CoordinateConversion identifies if the caller is using Windows Touch (WTG) or the UPDD driver as this determines how to map the physical coordinates to LabVIEW pane
coordinates.

G linateConversion
reference —

LastMinMan =

PanX

Pan¥

error in (no errar)

viRef

paneRef

error out

TouchData is the current touch data reported by the WTG or UPDD API. This is used to determine if the current touch is within the bounds of the graph control.

reference to a graph control used to change the scales programatically for panning.
LastMinMax is the last locked in graph range used as input to modify the scales based on PanX and PanY. This should remain the same from the beginning of a
touch pan to the end of a touch pan and is used as a reference for modifying the scales.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

— The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

PanX is a scaling factor to apply to the x scale minimum and maximum. The difference between the max and min will be scaled by this amount.

PanY is a scaling factor to apply to the y scale minimum and maximum. The difference between the max and min will be scaled by this amount.

viRef is a reference to the top level vi to map physical coordinates to panel coordinates.

paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.
CoordinateConversion is used to identify if the Windows Touch (WTG) or UPDD API is being used. This is used to determine the proper mapping of physical

coordinates to panel coordinates. The UPDD driver reports touch coordinates normalized to a scale of 0-4000 whereas the WTG driver reports touch coordinates
relative to physical pixels.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean i's either TRUE (X) fqr an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

T_he source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

GraphZoomAtPoint VI

Installed With: LabVIEW

Controls zooming of a graph by scaling the min and max ranges of the x and y scales relative to the physical x/y coordinates provided to the input. If the x/y coordinates input
map to a graph coordinate outside the current range, the graph will not be zoomed. Zooming will only be executed if the touches are within the bounds of the graph control.
Zoom is executed about the input x/y coordinate of TouchData. If First is true, the center point is used from calx/caly of TouchData and is stored for following calls to
activate zooming about a center point. CoordinateConversion identifies if the caller is using Windows Touch (WTG) or the UPDD driver as this determines how to map the
physical coordinates to LabVIEW pane coordinates.

G inateConversion
[T —

ZoomType

reference

LastMinMax
TouchData
ZoomFactor

error in (no error)

error out

reference to a graph control used to change the scales programatically.
viRef is a reference to the top level vi to map physical coordinates to panel coordinates.

Page 7 of 15

paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.
ZoomType defines either an x axis or y axis zoom.

LastMinMax is the last locked in graph range used as input to modify the scales based on PanX and PanY. This should remain the same from the beginning of a
touch pan to the end of a touch pan and is used as a reference for modifying the scales.

ZoomFactor is the zoom amount as a percentage where 100 equates to 100% of the image size.
First should be set to TRUE on first touch. This forces the touch coordinate to be stored internally to this VI in order to control zooming about the point defined by
calx and caly of TouchData.
CoordinateConversion is used to identify if the Windows Touch (WTG) or UPDD API is being used. This is used to determine the proper mapping of physical
coordinates to panel coordinates. The UPDD driver reports touch coordinates normalized to a scale of 0-4000 whereas the WTG driver reports touch coordinates
relative to physical pixels.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)

gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

T_he source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

TouchData is the current touch data reported by the WTG or UPDD API. This is used to determine if the current touch is within the bounds of the graph control.
=3 Also, calx and caly are used to determine the first point of touch to control the point where zoom is activated on a graph control.

[

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
= [
o= gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
= The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

displayed.

ObjectTouched VI

Installed With: LabVIEW

Determines if the input x and y coordinates are within the object bounds defined in the ROI_Bounds and ROI_Pesition inputs. The Bounds and Position properties of a front
panel's object that needs to be monitored for a touch can be wired to the ROI_Bounds and ROI_Position inputs. A reference to the front panel's vi and pane must also be
wired to convert display coordinates to panel coordinates. CoordinateConversion identifies if the caller is using Windows Touch (WTG) or the UPDD driver as this
determines how to map the physical coordinates to LabVIEW pane coordinates.

G linateConversion
Position

Bounds

x

y

viRef

paneRef

error in (no errar)

ROL Touched

error out

y is the physical y coordinate reported by either the WTG or UPDD driver. This VI scales the coordinate based on CoordinateConversion.
Bounds

The Width of the front panel item to check for touch.
The Height of the front panel item to check for touch.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)

gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

Position

The Left coordinate in LabVIEW front panel coordinates of the front panel item to check for touch.
The Top coordinate in LabVIEW front panel coordinates of the front panel item to check for touch.

CoordinateConversion is used to identify if the Windows Touch (WTG) or UPDD API is being used. This is used to determine the proper mapping of physical
coordinates to panel coordinates. The UPDD driver reports touch coordinates normalized to a scale of 0-4000 whereas the WTG driver reports touch coordinates

relative to physical pixels.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more

information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

Page 8 of 15

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

displayed.
paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.
viRef is a reference to the top level vi to map physical coordinates to panel coordinates.

x is the physical x coordinate reported by either the WTG or UPDD driver. This VI scales the coordinate based on CoordinateConversion.
ROI_Touched is a TRUE if the specified region is touched.

WTG Example VI

Installed With: LabVIEW

A fully featured example that shows the integration between LabVIEW and the Windows 7 Touch API. This example demonstrates the initialization of the Windows
Touch/Gesture (WTG) driver by creating a user event which is then monitored for touch events. If a touch event occurs, the user event will be triggered and the touch
coordinates along with the device handle will be returned. The WTG driver will report multi-touch coordinates (from simultaneous presses) if the hardware connected
supports multi-touch, such as a capacitive touch monitor. The Windows 7 touch (WM_TOUCH) and gesture (WM_GESTURE) messages are captured by and interpreted by
the UPDD toolkit to monitor multi-touch events from Windows 7. If Windows 7 gestures are disabled, the Aledyne gesture engine provides additional touch gesture
recognition above and beyond Windows 7, which includes specifying direction of swipes, and x/y mode two-finger panning.

Also, the mouse pointer is disabled at the beginning such that a touch presses on the screen will not send mouse down events to the window. You may still see a cursor
overlay depending on the touch driver, but mouse events will not be sent to the LabVIEW window. This is useful if it is not desirable that the touchscreen creates mouse
presses when touched.

1. Initialize the Windows 7/8 API and create an event registration callback for touch data.

2. Turn off the mouse port interface so the touches don't override the mouse button control,
3. When a touch event is received display the data from the APL

4. Turn the mouse port interface back on to return mouse control.

5. Close the event and connection to the driver.

[Mo Error ‘t
E |[3] " Gesture Filter : Value Change 'F
Gesture Filter
L
MewVal t ;m
| 5

On the front panel, the type of gestures that are enabled can be specified. This must be changed only after running the VI. If Windows 7 Gestures are enabled, position data
via WM_TOUCH will not be sent anymore as the Windows 7 touch API only sends either WM_GESTURE or WM_TOUCH, but not both. But Windows 7 gestures can be
used to enable the default gesture handler that is part of Windows. If additional gesture functionality is required along with gaining access to the x/y coordinates of each touch
point, the Aledyne gesture engine can be used instead. By disabling the Windows 7 Gestures, the Aledyne gesture engine is automatically enabled and individual gestures can
be disabled/enabled using the Gesture Filter. After initialization and event registration, whenever a touch occurs the touch data and other driver information will be displayed
in PointerData.

Page 9 of 15

-
3 WTG_Examplei

File Edit View Project Operate Tools Window Help
»|2][@ 1]

1. Ensure only one touch panel is connected and Run the VL.

2. Touch the touch panel screen within the VI window and cbserve the Pointer Data recieved from the
Windows 7/8 Touch APL

3. To enable Windows 7 gestures (WM_GESTURE) check the Windows 7 Gestures box. The Aledyne gesture
engine will automatically be disabled. To re-enable the Aledyne gestures un-check the Windows 7 box
and enable any Aledyne gestures desired. The default is all Aledyne gestures enabled.

4. Stop the VI when done observing touch data.

GestureType

PointerData

a Gesture Filter
type tick
[|None | [|l) |] ["IWindows 7 Gestures
rawsx \rawy Aledyﬂe'ﬂwrpe
[|0 | [|g |] [/] Aledyne Zoom/Rotate
calx caly [/] Aledyne Pan

¢

iC | [B]
left right [‘ ™ ==]
D] [J
timed DeviceHandle

[| MNone

Zoom

[P

ZoomType

L

[E”No Zoom |

PanXDelta PanYDelta

Hc | [B

= =

]
]
]
]
M R
|
]
]
]

WTG Gestures Example VI

Installed With: LabVIEW

A fully featured example that shows how the UPDD toolkit can be used in multi-touch environments to process gestures and detect touches using the Windows 7 Touch API.
This example demonstrates detection and dragging of two independent touch points, detecting presses of multiple buttons simultaneously, flipping by swipe, zooming and
rotating images in a picture control, and zooming/panning of a waveform graph. This example is different from the UPDD Gesture Example in that it does not require use of
the Touch-Base UPDD driver. This fully featured example uses the built in touch features of Windows 7 so an additional driver is not required. This example has been
specifically developed for use with a MIMO Magic Touch 10.1" Capacitive Touch monitor and should be maximized on the monitor before running.

Use multiple touches to demonstrate tracking two movements within the touch area. Also, pressing both Button 1 and Button 2 simultaneously show how to detect multiple
button presses at the same time.

Page 10 of 15

13 Gestures uﬂléj

Use two fingers to demonstrate multi-touch
Trackers stay within frame

| o~ -

m Points |

E Picture

;/‘ Graph |
‘ Press Button 1 and Button 2 at the same time

J Both touches are recognized simultaneously!

. Stop <kl Button 1 &) Button 2

Use a left to right and right to left swiping motion to change the image. Use zoom contract/expand gestures to zoom the picture in and out. Rotate one finger around the other
as it remains stationary to rotate the image clockwise and counterclockwise. The image will snap to increments of 90 degrees when the touch points are removed.

7 3
13 Gestures l_ﬂléj

()] Points [i
|

Zoom Out
£ 100%
E Picture
Zoom In

;f‘ Graph
Change Image

"

0 Deg

. Stop 3
' Rotate

Use horizontal zoom gestures to zoom in and out in the horizontal (time) axis. Use vertical zoom gestures to zoom in and out in the vertical (Amplitude) axis. Place two
fingers close together on the graph then move left/right/down/up to pan the graph. Use horizontal swiping movements to change the signal type.

Page 11 of 15

e
{3 Gestures

'1 }‘ 4
[Zoom Out

M Points

E Picture

Amplitude
o
1

Graph 0.2

0.4
-06-

08-

1
H s 0 085 01 015 02 035 03 035 04 045 05 055 065 065 07 075 08 08 09 085 1

Time

S ————————————————

The example uses two functional loops. The top loop is a producer loop that monitors for touch events from the toolkit driver as well as for user events. Touch events are
passed to the bottom (consumer loop) using a lossy notifier. Since it is streaming XY data it can be lossy. However, it is important that the button press/release events are
always detected. To make sure this happens, the producer loops waits for a listener before sending the event. The consumer loop reads the touch data and determines how to

process the gestures to control either the multi-touch trackers, the picture, or graph control.

1 R.equlevs abstol (enlrols ti mandor for touches within their coordinates.
or for ing wil gmm
: LDadslnug:fl!shom dizk o with gestures
2, Creates o notifier for sending toiath dta feom the user interfacsfevent [20p b5 the bouch p-msm-g consumer I'r:w.
5. Inialize the UPDD driver and create an event -egnsml.-on callback fortouch dat.
[6. Turn off the h e
Y. Y ks vt g e o ik T o p-ms and receives tauch data from the UPDD taolkit.
I8, Tawch processing consumer loop that deciphers the tauch deta for swipe, zoom, and rotate snd demonstrates how
this can be used within several tais of a tab contral on the front panel.
19.Turn the mouse port interface back on te return mouse contral.
[10. Close the event and connection to the driver.
[L1, Destroy the notifier which will cause an eror in the consumes loop which will stop the loop.

&t Eror ~pf

graph indicaty

[[s the user intertace and event monitoring loop It cachesuss o events s wels (uch evert
fram the UPDD h data is ze p g via 3 natdier.

Paints[# Eociean] f p 7 [Turn On Swige, Zoom, and Pan
L . |And change Pan threshold so that both

Picture|# Booiesn | | IFingers must be closer than 600 units
Graph|2 Baclean] N Penl |i£5% cf zereen size) together to register 3 pan
Stop| -]
Buttonl Fen?
Buttor| [Exe]]
Snappedéngle
==
> Gragh .
o i
BothTeuched o}
BothTouched
o f
Ta
Thisis th p which recen data frem th loop and processes the infemnaticn.
A Pen haz moved ay position
o —tresiton]
- et
ﬂ = T "
2] Ly Rotate 1
= o=
D ’":-‘C:IK [Swipe H
=) ToomType H
| ¥Max PanxDelts H] zcom
= PantDelts H
AMin
{81
o [#TebCantrol]
] GRS
[Pane]
Penl
RS e E

Page 12 of 15

WTG Graph Example VI

Installed With: LabVIEW

Demonstrates how to use the touchscreen toolkit to manipulate the x and y scales of a waveform graph. This example detects the zoom, rotate, and pan gestures from the
toolkit and modifies the scales of the graph control. This can be useful for improving usability of LabVIEW touch applications display data to the user on the front panel and
allowing the user to interact with the data as they would expect on a mobile device. These features are only possible with multi-touch capable monitors that can detect 2 or
more touch points simultaneously. This example has been specifically developed for use with a MIMO Magic Touch 10.1" Capacitive Touch monitor and should be
maximized on the monitor before running. The implementation uses the Windows 7 Touch API and the WM_TOUCH message.

Use zoom contract/expand gestures to zoom the graph in and out. This effectively changes the scale and centers the zoom around the center point between the two touch
points. Place both fingers close together and move them around to pan the graph. Use a single touch along the graph to move the graph cursor.

.

AR - "
11 ——

'y ZoomIn VALN Pan 7 Cursor

Amplitude
Ig b &b A N o N & o = B
1 | TR h | h R |

! 1 1 1 1 ! 1 ! !
0 0.05 01 015 0.2 0.25 03 035 0.4 0.45 0.5 0.55 06 0.65 0.7 0.75 08 0.85 09 095 al

. Stop

The example uses one user interface loop that monitors for touch events from the touchscreen API through user events in the event structure. The x and y scales of the graph
control are modified directly in the event handler. This can be done if the processing of the gesture does not take a significant amount of time. During initialization in this
example, the touchscreen API has been configured to notify on every 5th touch event, which significantly reduces the number of events that must be handled by the user event
loop, therefore, this allows enough time to process the touch event directly in the event handler. It is advised to handle and process touch and gesture messages in a separate
loop or thread so that the user interface does not become unresponsive. The example here shows everything processed in the user event handler for simplicity, but more
complex applications would likely require processing of touch and gesture messages in a separate thread.

This iz required ta set the conversion]
routine to rap driver coordinates to
hysical coordmates,

L. Writes a sample waveform Lo the graph indicator for demaonstiation of zcoming with gestures.

12. Initialize the touch driver and create an event registration callback for touch data. Report interval is set >1

50 that the user event loop is not flooded with touch events since it is directly manipulating the graph in

the user event. Ideally, manipulation of frant panel controls is done in 3 separate thread or loap.

3. Turn On Swipe, Zoom, and Pan gestures. If necessary, gesture thresholds can be also changed here using

the SexGestureThreshald vis.

4. User interface/event loop used to monitor fer butten presses and receives touch data from the touchsereen driver,

5. On 2 touch move event, determine if the gesture is a pan, zoom, or single touch move. [the gesture transitions from|
2 pan ko zoom or 20am to pan, the last graph range must be saved in “lastRange” 5o that the range i saved
and the graph does not jump when transitioning between gestures.

6. On & pan event, move the graph in proportion to the size of the graph so the data follows the users finges movement.

7. On single touch, control the graph cursor and map physical coordinates to the graph's data,

(® WindowsTouch ~

== lestRange
b HE=

— YAlastRange
Graph[# ermGraph} ange]
TN

- —

==

/8. Close th t and to the driver,
¢ N Efor ~H]
User intedace loop
M= User Event ~bf
4 XY Event” hd LastGesture
B | T
TouchData GestureTyp: I
TouchDatatype -
TouchData.Zoom £
TouchDataZoomType
TouchData
TouchData PenXDelta “Pan”, Default ¥
El TouchDats fanVDelta If we went directly from pan to
TouchDatalelt — Zoam then store the range
TouchDataraws

FrLastGesture?|

WTG Picture Example VI

Installed With: LabVIEW

Page 13 of 15

Demonstrates how to enable the Windows 7 Gesture Engine and messaging built into the WM_GESTURE message. This example connects to the touch driver, receives user
events that are triggered off of WM_GESTURE and returns gesture data for Zoom and Rotate and uses the data to manipulate a picture control. This can be useful for
extended touch applications. These features are only possible with multi-touch capable monitors that can detect 2 or more touch points simultaneously. This example has
been specifically developed for use with a MIMO Magic Touch 10.1" Capacitive Touch monitor and should be maximized on the monitor before running.

Use zoom contract/expand gestures to zoom the picture in and out. Rotate one finger around the other as it remains stationary to rotate the image clockwise and
counterclockwise.

”
{3 Picture Example
p

Zoom Out
100%

Page 14 of 15

The example uses one user interface loop that monitors for touch events from the touchscreen API through user events in the event structure. The zoom factor of the picture
control is modified directly in the event handler. This can be done if the processing of the gesture does not take a significant amount of time. During initialization in this
example, the touchscreen API has been configured to notify on every 30th touch event, which significantly reduces the number of events that must be handled by the user
event loop, therefore, this allows enough time to process the touch event directly in the event handler. Modifying a picture control in this nature takes a significant amount of
time so the number of touch events reports has to be reduced. It is advised to handle and process touch and gesture messages in a separate loop or thread so that the user
interface does not become unresponsive. The example here shows everything processed in the user event handler for simplicity, but more complex applications would likely
require processing of touch and gesture messages in a separate thread. Also note that for zoom control using WM_GESTURE, the zoom quantity is reported as a distance
between the two touch points in pixels, therefore, the position needs to be converted to a ratio based on the first touch position so that the image scan be scaled in terms of a
percentage of the original size, where 100% is the original size. When using the Aledyne zoom gesture, zoom is reported directly as a ratio of the original touch point
distance.

[L. Initialize the Windows Touch driver and create an event registration callback for touch data.

|2. Enable the Windows 7 Gesture Message (WM_GESTURE) and disable custorn Aledyne gestures.

3. User interface/event loop used to monitor for button presses and receives touch data from the touch driver,

l4. Check to see if the current touch is within the bounds of the picture cantrel and only menipulate the image.
if touched within the control bounds.

5. Touch pracessing deciphers the WIM_GESTURE messages.

[B- Close the event and connection to the driver.

ﬁ No Errar]|

[tooHE] M i + User Event ~bf] Bl

"XY Event”

s
KV Bvent” vy
(oo A Penhas moveday posiion
|

’ﬁ EHRT— 6 B e ~Bf
L = - =
i B[Windows Zoom™ v}
WM_GESTURE: Zoom is reported as distance between the two points in pixels, B E
T Wie need to save the first position a5 reference for 2 z00m ratio.
Zoam
Rotate |

TouchData type |—
TouchData
TouchDatarava

S
[This s required to Set the conversion|
=outine to map driver coordinates tc'l

left
lohysical eoordinate: TouchData.rawy
Pic Iohysical coordmstes. o
T Saltd
B FWindowsTouch | —E> gom

Retation

lzstLeftButton Eﬁ.—E

M True 't
] "Windows Rotate” 't

WM_GESTURE: Rotate is reported as angle from -360-360 degrees

GestureType
Zoom
= "
Ll Rotate +Rotation
left :Megate since rotate function is + for cc rotations

WTG Multi-Button Example VI

Installed With: LabVIEW

Demonstrates how to use the touchscreen toolkit to detect touch on multiple areas of interest on the front panel simultaneously using the Windows 7 Touch API. A typical
application would be to detect touch of two buttons simultaneously to ensure operators hands are away from machinery before starting a dangerous piece of machinery. This
eliminates the need for external mechanical buttons. These features are only possible with multi-touch capable monitors that can detect 2 or more touch points
simultaneously. The implementation uses the Windows 7 Touch API and the WM_TOUCH message.

Press any number of the 4 touch areas to see them detected simultaneously.

Page 15 of 15

Multi-Button Exam

Touch each area with different fingers to demonstrate detection of multiple touch points simultaneously
*You must have a touchscreen capable of 2 or more touches for this demo

wll ol
-

. Stop

Note: Some touchscreens only support 2 touches. For all 4 touch areas to be recognized simultaneously, you must have a touchscreen that supports 4 or more simultaneous touch points.
Refer to system properties to identify the number of supported touch points.

System
Rating: mWindDws Experience Index
Processor: Intel(R) Core(TM) i7-3840QM CPU @ 2.80GHz 280 GHz
Installed memory (RAM): 16,0 GB
System type: 64-bit Operating System
Pen and Touch: Touch Input Available with 16 Touch Peints

The example uses one user interface loop that monitors for touch events from the touchscreen API through user events in the event structure. The value property of the touch
indicators are modified directly in the event handler. This can be done if the processing of the gesture does not take a significant amount of time. During initialization in this
example, the touchscreen API has been configured to notify on every 5th touch event, which significantly reduces the number of events that must be handled by the user event
loop, therefore, this allows enough time to process the touch event directly in the event handler. It is advised to handle and process touch and gesture messages in a separate
loop or thread so that the user interface does not become unresponsive. The example here shows everything processed in the user event handler for simplicity, but more
complex applications would likely require processing of touch and gesture messages in a separate thread.

L Iniialize the Windows Toush deiver and creste an event registration callback for touch dsta,
2. Turn off sl gestures so only xfy touch points are reported thiough the user event.

3. User interface/event loop used to monitor for button presses and receives touch data from the touch driver,
4. For each uni oceurs, save the coordinates and ich ones are in the bounds
cf the registered controls/indicatars. H any touches are within the bounds, change the value on the frant

panel to indicste a touch within the sres,
5. Close the event and connection 1o the driver.

oo e ™ [s

[e
- e 2

| ETjares 3
L Eares s

Userinterface loap

[0 M User Event B[
[Button Event” 't
T 3
Pen Down Event. I For number of touch aress on front panel
TouchData.GestureType | — For numbes of touch paints.

[* WindowsTouch

TouchDatatype |—
TouchDatasawn m._
TouchData. awy

TouchData.Stylus

" L o B
feme] 1 =© Boo (strict) m_. b@

* Value | ! mj

- Br..1> = ool (strict)
Bounds W

@

Page 1 of 15

Aledyne

engineering
UPDD Touch Interface Help

June 2014

The UPDD interface requires a separate driver (sold separately) which supports multiple Operating Systems and many different touchscreens. This is required for integration
with NI standalone chassis, such as the cDAQ-9139. Refer to http://www.touch-base.com/ or contact sales@aledyne.com. Touch-Base is a leading developer and supplier of
touchscreen and pointer device drivers. The Universal Pointer Device Driver is in use on many thousands of devices worldwide. This API provides a LabVIEW wrapper
around the UPDD driver and a set of LabVIEW vi's in order to initialize the driver and receive events and touch data when any touchscreen connected is touched.

Please visit http://touch-base.com/ to purchase and download the UPDD driver for your hardware if using the UPDD APIs in the toolkit. The downloaded UPDD driver will
include a TBApi32/64.dll and an ACE_UPDD_5.6.2.dll which must both be copied into the directory of this toolkit (<LabVIEW>\vi.lib\Aledyne Engineering\Touchscreen
Toolkit).

Touch Data Elements Reported by the Toolkit:

Type: Defines if the event reported is an XY event, such as dragging a finger or stylus across the screen, or a Button event, which happens once on a depression or removal of
a finger or stylus on the screen. When a button event occurs, the XY coordinates of the button press or release will also be reported for easy processing. Following a button
press, the application will continually receive XY Events with position data until the button is released.

type

XY Event
Button Event

Tick: Relative time in ticks that the data was read from the UPDD driver.

Rawx: Raw x value of button press/release or drag received from the touch controller normalized to 0-4000 as reported by the UPDD driver. For the WTG API this is the
screen coordinate in physical pixels.

Rawy: Raw x value of button press/release or drag received from the touch controller normalized to 0-4000 as reported by the UPDD driver. For the WTG API this is the
screen coordinate in physical pixels.

Calx: The corresponding calibrated x value as reported by the UPDD driver. For the WTG API this is mostly unused except for in Zoom/Rotate mode it provides the center
point of the two touches so that the application can zoom about the center point.

Caly: The corresponding calibrated y value as reported by the UPDD driver. For the WTG API this is mostly unused except for in Zoom/Rotate mode it provides the center
point of the two touches so that the application can zoom about the center point.

Left: The state of the left button where 0 is released and 1 is pressed. The left button is used for touches. This data is only valid for Button Events.
Right: The state of the right button where 0 is released and 1 is pressed. This data is only valid for Button Events.
Timed: Reserved for Future Use.

DeviceHandle: Used to identify the monitor/device that was pressed in a multi-monitor system. For the UPDD API, this should be used with UPDD_GetDevicelndex.vi to
identify which monitor is reporting the data. For the WTG AP], this is a unique identifier for the monitor that reported the touch event. In a single monitor environment, this
is not needed.

Stylus: This is the pen/stylus number in a multi-touch application. If the monitor being used supports multi-touch, up to 16 independent pens will be reported based on the
capabilities of the hardware. This can be used to create custom gestures using a capacitive touchscreen monitor. In a resistive touch application that only supports one
coordinate, this will always be 0.

GestureType: The toolkit has built in gesture recognition for swiping, zooming, rotating, and panning. Swipe only requires single touch monitors but zoom, rotate, and pan
will only work in multi-touch environments. Zoom and rotate are reported as one gesture but with independent values because zoom and rotate are interpreted as one gesture
when using two fingers on a display. The application can monitor either Zoom or Rotate if it is only desired to perform one of the functions. The Windows Zoom, Windows
Rotate, and Windows Pan are gesture events triggered by the Windows WM_GESTURE message when Windows specific gestures are enabled using the WTG API. If Pan
and Zoom/Rotate are enabled, when the pan threshold is exceeded the Pan gesture will be cancelled and the gesture engine will transition to the Zoom/Rotate gesture if its
zoom threshold is exceeded. If the distance between the two touch points is then reduced lower than the zoom threshold, the gesture will be canceled and if the distance is less
than the pan threshold, the gesture engine will transition back to the Pan gesture.

GestureType
None

Swipe Right
Swipe Left
Swipe Down
Swipe Up
Zoom/Rotate
Pan
Windows Zoom
Windows Rotate
Windows Pan

Page 2 of 15

Zoom In/Out Swipe Rotate Pan

Swipe: Reports the difference in X movement for left to right and right to left swipe gestures and the difference in Y movement for down to up and up to down gestures. This
is not reported until the gesture threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi.

Zoom: Reports the zoom scale in a multi-touch environment when pinching and expanding motions are detected on the monitor. This is reported as a percentage of the initial
spacing between the two touch points for the Aledyne gesture. So if two touch points are initially spaced 1 inch apart and are moved apart to 2 inches, a value of 200% will
be reported. The threshold distance to which both fingers must be apart from one another before considering the gesture a zoom can be configured using
UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi. If a zoom gesture is being reported and the fingers move together again within the set threshold, the zoom
gesture will be cancelled. If pan is enabled it will go back to pan mode. For WM_GESTURE (Windows Zoom), the zoom quantity is reported as a distance in pixels between
the two touch points. The quantity is not converted to a percentage of the initial spacing and, if this is required, it must be done in the user's application. Refer to
WTG_PictureExample.vi for an example.

Rotate: When one finger is rotated around the second finger which remains a pivot point, rotation is detected. The angle of rotation reported correlates to the rotation angle of
one finger with respect to the other. The maximum reported angles are -90 to 90 degrees. If the rotation is not sensitive enough in the application, this number can simply be
scaled or multiplied by some factor to make the rotation more sensitive to movement of the fingers on the screen.

ZoomType: Returns if the zoom orientation is horizontal or vertical based on touch positioning. If the relative angle is greater than 45 degrees from the horizontal axis, a
vertical zoom type is returned.

ZoomType |
4 Mo Zoom
Vertical Zoom

Horizontal Zoom

PanXDelta: Reports the difference in X movement for left to right and right to left pan gestures. For right to left gestures this will be reported as a negative value. This is not
reported until the gesture threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi. If a pan is started
and then the fingers are moved apart to commence a zoom gesture, once the pan threshold is exceeded, the gesture engine will automatically cancel the pan and will
commence the zoom.

PanYDelta: Reports the difference in Y movement for down to up and up to pan gestures. For down to up gestures this will be reported as a negative value. This is not
reported until the gesture threshold is passed. The threshold can be customized using UPDD_SetGestureThreshold.vi or WTG_SetGestureThreshold.vi. If a pan is started
and then the fingers are moved apart to commence a zoom gesture, once the pan threshold is exceeded, the gesture engine will automatically cancel the pan and will
commence the zoom.

Refer to "<LabVIEW>\examples\Aledyne Engineering\Touchscreen Toolkit\" for examples of how to interface to the UPDD and WTG driver.

To provide feedback or request support, contact us here.

©2012-2014 Aledyne Engineering. All rights reserved.

UPDD _Initialize VI

Installed With: LabVIEW

Creates a user event and sends the reference to the UPDD_DLL.dIl wrapper DII for registration of the callback in the TBApi.dll. The interval at which user events are reported
can also be specified by ReportInterval. If this is set to 1, every received Windows event will be passed to LabVIEW. If this is 2, then every other event will be passed to
LabVIEW. This can be increased to reduce the amount of interrupts generated by the driver. By default this is set to 1.

Thbupdd.ini Directory
Reportinterval
error in (no error) ==

Event Registration Refnum
refnumOut
=== grror out

Tbupdd.ini Directory is the directory where the Tbupdd.ini driver file resides.

Reportlnterval defines how often to send touch messages from the driver up to the LabVIEW user event. By default this is 1 so that every message is sent. Messages
are sent about every 5-10ms. This can be increased so that LabVIEW is not interrupted too often. The maximum is 10.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

Page 3 of 15

== The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

Event Registration Refnum
refnumOut is the reference to the UPDD instance.

UPDD_MousePointerDisable VI

Installed With: LabVIEW

Calls into the UPDD_DLL wrapper DIl and calls TBApiMousePortInterfaceEnable(false) which disables the mouse port interface. This has no effect on Windows 8 and the
mouse pointer cannot be disabled.

refnum ;@: refnumOut
errar in (no errar) error out
refnum is the reference to the UPDD instance.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

g]l;; lsa(;l;l(“lce string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

;‘i}z Sstr;ajtouri liJr(l)gOlfrerllI; tiis0 Ei;}ﬁ:u'tﬂt}llili rg,? g(j);p?:;g,or, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
T_he source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
refnumOut is the reference to the UPDD instance.

UPDD_MousePointerEnable VI

Installed With: LabVIEW

Calls into the UPDD_DLL wrapper DIl and calls TBApiMousePortInterfaceEnable(true) which enables the mouse port interface. This has no effect on Windows 8.
refnum ;@: refnumQut

errar in (no errar) error out

refnum is the reference to the UPDD instance.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

g]l;; lsa(;l;l(“lce string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

;‘i}z :t;touri liJr(l)gOlfrerllI; tiis0 Ei;}ﬁ:u'tﬂt}llili rg,? g(j);p?:;g,or, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
T_he source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
refnumOut is the reference to the UPDD instance.

UPDD_GetAllDevices VI

Installed With: LabVIEW

Iterates through the devices returned by TBApi.dll and populates an array of device names and handles.
refnum refnumQut
. Devicelist
error in (no error) m
error out

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more

Page 4 of 15

information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error

displayed.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

;‘i}z :tl';l]tol:-i ?gg)l;r; t1iso Elz};gu'flégli r(r)o(r) g(i)slrp?:yzlgf)r, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
DeviceList is a list of detected touchscreen devices.
adl Handle
device_name
refnum is the reference to the UPDD instance.
refnum is the reference to the UPDD instance.

UPDD_GetDevicelndex VI

Installed With: LabVIEW

Takes the input device handle and iterates through the device list to find a match. If a match is found, the device name and index in the device list array is returned. If no
match is found, -1 is returned for the index and a blank string is returned for the device name.

DeviceHandle Index
Devicelist device_name
error in (no error} error out

DeviceList is the list of devices returned by GetAllDevices.

Handle
device_name

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
DeviceHandle to a specific device in the list.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
Index of the device cooresponding to DeviceHandle
device_name is the name of the device cooresponding to DeviceHandle

UPDD_GestureFilter VI

Installed With: LabVIEW

Calls into the UPDD driver and enables/disables gesture features. Windows 7 Gestures do not apply for the UPDD driver and only the Aledyne custom gesture engine is
enabled.

refnumOut

----------- error out

error in (no error) =

Gesture Filter

_ W7 defines if Windows 7 Gestures are enabled. If true, Windows 7 WM_GESTURE messages are received and WM_TOUCH and the Aledyne gesture engine
is disabled. This setting does not do anything for the UPDD instance. Windows 7 gestures are automatically disabled and this setting is ignored for UPDD. This
can only be enabled for the WTG instance.

Swipe defines if the Aledyne swipe gesture is enabled. This can only be enabled if W7 is disabled.

Page 5 of 15

Zoom/Rotate defines if the Aledyne zoom/rotate gesture is enabled. This can only be enabled if W7 is disabled.
Pan defines if the Aledyne pan gesture is enabled. This can only be enabled if W7 is disabled.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

== The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

= The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more

information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
refnum is the reference to the UPDD instance.
refnumOut is the reference to the UPDD instance.

UPDD_SetGestureThreshold VI

Installed With: LabVIEW

Sets the thresholds of gestures for finer tuning of gesture response. Currently, the only gestures that allow fine tuning are the Aledyne Swipe and Pan. These thresholds are
defined in units of screen width and height as reported by the UPDD driver (on a scale of 0-4000).

For Swipe, when a single finger is swiped across the screen, once it has moved greater than the specified distance in UPDD units, the API will start registering the gesture.
The default for the Swipe threshold is 200 units (5% of screen size).

For Pan, when two fingers are moved across the screen, and the two fingers start with a distance apart that is less than the specified distance in UPDD units, the API will start
registering the gesture. The default for the Pan threshold is 700 units.

For Zoom, when a zoom is started by holding two fingers close together, the zoom percentage will stay at 100% until the distance the fingers are moved apart is greater than
the specified distance in UPDD units. This prevents the start zoom to be really small when a zoom is started causing a large zoom percentage for a small movement apart.
The default for the Zoom threshold is 700.

refnum refnumOut
GestureType
Threshold error out
error in (no error)

refnum is the reference to the UPDD instance.
GestureType is the type of gesture to be configured. Currently, the only gesture thresholds that can be configured are the Aledyne swipe and pan.
Threshold is the threshold to set for the gesture specified. The default for swipe is 200 units and the default for pan is 600 units.

The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event

of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

— The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
refnumOut is the reference to the UPDD instance.

UPDD_ Close VI

Installed With: LabVIEW

Unregisters the event and closes the connection to UPDD_DLL.dII.

EventRegRefnum
refnum

error out
error in (no errar)

EventRegRefnum for the event registered in UPDD_Initialize.

Page 6 of 15

refnum is the reference to the UPDD instance created by UPDD _Initialize.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

g]l;; lsa(;l;l(“lce string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
= g_he 1sout(‘ice string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
isplayed.

UPDD _Scale VI

Installed With: LabVIEW

Scales the input x-y coordinates received from the UPDD driver to map to the coordinates of a front panel VI and pane. Note that the top-left coordinate of the touch panel
will be mapped to the top-left coordinate of the VI pane referenced. Since the UPDD driver reports screen coordinates as a number from 0-4000, the value must be mapped to
physical screen coordinates as a percentage of total resolution before mapping to pane coordinates.

x x_scaled
¥ y_scaled
viRef == grror out

paneRef
error in (no error)

viRef is a reference to the top level vi to map physical coordinates to panel coordinates.

x is the physical x coordinate reported by the UPDD API. This is reported as a normalized coordinate of 0-4000.

y is the physical y coordinate reported by the UPDD API. This is reported as a normalized coordinate of 0-4000.

paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

g]l;; lsa(;l;l(“lce string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

x_scaled is the scaled x LabVIEW panel coordinate.

y_scaled is the scaled y LabVIEW panel coordinate.

PanGraph VI

Installed With: LabVIEW

Controls panning of a graph by scaling the min and max ranges of the x and y scales relative to the physical x/y coordinates provides to the input. If the x/y coordinates input
map to a graph coordinate outside the current range, the graph will not be panned. Panning will only be executed if the touches are within the bounds of the graph control.
CoordinateConversion identifies if the caller is using Windows Touch (WTG) or the UPDD driver as this determines how to map the physical coordinates to LabVIEW pane
coordinates.

G linateConversion
reference

error out

Pan¥

error in (no errar)
viRef

paneRef

TouchData is the current touch data reported by the WTG or UPDD API. This is used to determine if the current touch is within the bounds of the graph control.

Page 7 of 15

reference to a graph control used to change the scales programatically for panning.

LastMinMax is the last locked in graph range used as input to modify the scales based on PanX and PanY. This should remain the same from the beginning of a
touch pan to the end of a touch pan and is used as a reference for modifying the scales.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
= The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
PanX is a scaling factor to apply to the x scale minimum and maximum. The difference between the max and min will be scaled by this amount.
PanY is a scaling factor to apply to the y scale minimum and maximum. The difference between the max and min will be scaled by this amount.
viRef is a reference to the top level vi to map physical coordinates to panel coordinates.
paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.
CoordinateConversion is used to identify if the Windows Touch (WTG) or UPDD API is being used. This is used to determine the proper mapping of physical
coordinates to panel coordinates. The UPDD driver reports touch coordinates normalized to a scale of 0-4000 whereas the WTG driver reports touch coordinates
relative to physical pixels.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

GraphZoomAtPoint VI

Installed With: LabVIEW

Controls zooming of a graph by scaling the min and max ranges of the x and y scales relative to the physical x/y coordinates provided to the input. If the x/y coordinates input
map to a graph coordinate outside the current range, the graph will not be zoomed. Zooming will only be executed if the touches are within the bounds of the graph control.
Zoom is executed about the input x/y coordinate of TouchData. If First is true, the center point is used from calx/caly of TouchData and is stored for following calls to
activate zooming about a center point. CoordinateConversion identifies if the caller is using Windows Touch (WTG) or the UPDD driver as this determines how to map the
physical coordinates to LabVIEW pane coordinates.

G linateConversion
First

ZoomType

reference

LastMinax
TouchData
ZoomFactor

error in (no errar)

viRef

paneRef

= error out

reference to a graph control used to change the scales programatically.
viRef is a reference to the top level vi to map physical coordinates to panel coordinates.
paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.
ZoomType defines either an x axis or y axis zoom.
LastMinMax is the last locked in graph range used as input to modify the scales based on PanX and PanY. This should remain the same from the beginning of a
touch pan to the end of a touch pan and is used as a reference for modifying the scales.

ZoomFactor is the zoom amount as a percentage where 100 equates to 100% of the image size.
First should be set to TRUE on first touch. This forces the touch coordinate to be stored internally to this VI in order to control zooming about the point defined by
calx and caly of TouchData.
CoordinateConversion is used to identify if the Windows Touch (WTG) or UPDD API is being used. This is used to determine the proper mapping of physical
coordinates to panel coordinates. The UPDD driver reports touch coordinates normalized to a scale of 0-4000 whereas the WTG driver reports touch coordinates
relative to physical pixels.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.
TouchData is the current touch data reported by the WTG or UPDD API. This is used to determine if the current touch is within the bounds of the graph control.
Also, calx and caly are used to determine the first point of touch to control the point where zoom is activated on a graph control.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event

Page 8 of 15

of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.
The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.
= }he 1sout(‘lce string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
isplayed.

ObjectTouched VI

Installed With: LabVIEW

Determines if the input x and y coordinates are within the object bounds defined in the ROI_Bounds and ROI_Position inputs. The Bounds and Position properties of a front
panel's object that needs to be monitored for a touch can be wired to the ROI_Bounds and ROI_Position inputs. A reference to the front panel's vi and pane must also be
wired to convert display coordinates to panel coordinates. CoordinateConversion identifies if the caller is using Windows Touch (WTG) or the UPDD driver as this
determines how to map the physical coordinates to LabVIEW pane coordinates.

G inateConversion
Position

Bounds

ks

y

viRef

paneRef :

error in (no error) s

s ROT_Touched

----------- error out

y is the physical y coordinate reported by either the WTG or UPDD driver. This VI scales the coordinate based on CoordinateConversion.
Bounds

The Width of the front panel item to check for touch.
The Height of the front panel item to check for touch.

The error in cluster can accept error information wired from VIs previously called. Use this information to decide if any functionality should be bypassed in the event
of errors from other VIs. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

= The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

= T_he source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

Position

The Left coordinate in LabVIEW front panel coordinates of the front panel item to check for touch.
The Top coordinate in LabVIEW front panel coordinates of the front panel item to check for touch.
CoordinateConversion is used to identify if the Windows Touch (WTG) or UPDD API is being used. This is used to determine the proper mapping of physical
coordinates to panel coordinates. The UPDD driver reports touch coordinates normalized to a scale of 0-4000 whereas the WTG driver reports touch coordinates
relative to physical pixels.
The error out cluster passes error or warning information out of a VI to be used by other VIs. The pop-up option Explain Error (or Explain Warning) gives more
information about the error displayed.

The status boolean is either TRUE (X) for an error, or FALSE (checkmark) for no error or a warning. The pop-up option Explain Error (or Explain Warning)
gives more information about the error displayed.

The code input identifies the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error displayed.

The source string describes the origin of the error or warning. The pop-up option Explain Error (or Explain Warning) gives more information about the error
displayed.

paneRef is a reference to the top level vi pane to map physical coordinates to panel coordinates.

viRef is a reference to the top level vi to map physical coordinates to panel coordinates.

x is the physical x coordinate reported by either the WTG or UPDD driver. This VI scales the coordinate based on CoordinateConversion.

ROI_Touched is a TRUE if the specified region is touched.

UPDD Example VI

Installed With: LabVIEW

A fully featured example that shows the integration between LabVIEW and the UPDD driver. This example demonstrates the initialization of the UPDD driver by creating a
user event which is then monitored for touch events. If a touch event occurs, the user event will be triggered and the touch coordinates along with the device handle will be
returned. The device handle can be used to provide a device identifier for the specific touchscreen that was touched in the event multiple touchscreens are connected. The
UPDD toolkit will report multi-touch coordinates (from simultaneous presses) if the hardware connected supports multi-touch, such as a capacitive touch monitor.

Also, the mouse pointer is disabled at the beginning such that a touch event on any screen will not override the mouse control. This is useful if it is not desirable that the
touchscreen overrides the mouse and the programmer wishes to passively monitor the touch coordinates. In this way the machine can be used normally while still receiving
touch events.

Thupdd.ini Directory

1. Initialize the UPDD driver and create an event registration callback for touch data.

2. Turn off the mouse port interface so the touches don't override the mouse control.

3. Get a list of touch panels that we will receive events from,

4, When a touch event is received, decode which panel it came from and display
the device name.

5.Turn the mouse port interface back on to return mouse control.

6. Close the event and connection to the driver.

Page 9 of 15

= |[1] <coordinates>: User Event 'Hi

L

=
_m‘- evice_name

Devicelist

T PointerData

cuchData.DeviceHandle
TouchData

On the front panel, the directory where the tbupdd.ini driver file must be provided. Typically this is with the UPDD device driver install. Contact Touch-Base, Ltd. for more
information. The DeviceList will populate when the VI is started showing all detected touch devices. This is used for identifying the touched device in a multi-device
configuration when a touch event occurs. After initialization and event registration, whenever a touch occurs the coordinates and other driver information will be displayed in

PointerData.

UPDD Gestures Example VI

Installed With: LabVIEW

,
§3 UPDD_Example.vi Front Panel

ol

File Edit View Project Operate

Window Help

[:b |{§}| (:\IE [15pt Application Font |~ ”3;;.‘

E|EN

-'J\W%

Tbupdd.ini Directory

1. Set the directory where the Thupdd.ini driver cnnﬁgu?ation file is located.

2, Ensure one or more touch panels are connected,

2. Run the VI The device list should populate showing which touch panels have been detected.

4, Touch one of the touch panel screens and observe the Pointer Data recieved from the driver.
The device name and index will alse de displayed for the touched display.

= Stop the VIwhen done observing touch data.

[[‘}, C:\Program Files\UPDD

device_name

Handle
0

device_name

Handle
0

device_name

Handle
]

device_name

device_name

[

ﬁ: |] Ed‘|o |]
() ()
() (7
(1) [
(1) [
e
S A —
[MT) [mepm]
(F 1) [(F 7

m

Page 10 of 15

A fully featured example that shows how the UPDD toolkit can be used in multi-touch environments to process gestures and detect touches using the UPDD driver. This
example demonstrates detection and dragging of two independent touch points, detecting presses of multiple buttons simultaneously, flipping by swipe, zooming and rotating
images in a picture control, and zooming/panning of a waveform graph. This example has been specifically developed for use with a MIMO Magic Touch 10.1" Capacitive

Touch monitor and should be maximized on the monitor before running.

Use multiple touches to demonstrate tracking two movements within the touch area. Also, pressing both Button 1 and Button 2 simultaneously show how to detect multiple

button presses at the same time.

Page 11 of 15

13 Gestures uﬂléj

Use two fingers to demonstrate multi-touch
Trackers stay within frame

| o~ -

m Points |

E Picture

;/‘ Graph |
‘ Press Button 1 and Button 2 at the same time

J Both touches are recognized simultaneously!

. Stop <kl Button 1 &) Button 2

Use a left to right and right to left swiping motion to change the image. Use zoom contract/expand gestures to zoom the picture in and out. Rotate one finger around the other
as it remains stationary to rotate the image clockwise and counterclockwise. The image will snap to increments of 90 degrees when the touch points are removed.

7 3
13 Gestures l_‘ﬂléj

m Points | T &
|
| Zoom Out
| € 100%
‘ .
E Picture ‘
Zoom In

|
\f‘ Graph |
’ Change Image

"

0 Deg

. Stop |
, Rotate

Use horizontal zoom gestures to zoom in and out in the horizontal (time) axis. Use vertical zoom gestures to zoom in and out in the vertical (Amplitude) axis. Place two
fingers close together on the graph then move left/right/down/up to pan the graph. Use horizontal swiping movements to change the signal type.

Page 12 of 15

-
E Gestures

A

A« >
[

NLR
W' Pan

(] Points

0.8-]

E Picture

0.6
04-

0.2

Amplitude
o
|

-02-

Graph
-04-

1 | 1 1 I 1 ! I 1 1 1 | 1 1 ! 1 | 1 |
. Stop 0 005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 08 08 085 1
Time

e ——————————————————————————

The example uses two functional loops. The top loop is a producer loop that monitors for touch events from the toolkit driver as well as for user events. Touch events are
passed to the bottom (consumer loop) using a lossy notifier. Since it is streaming XY data it can be lossy. However, it is important that the button press/release events are
always detected. To make sure this happens, the producer loops waits for a listener before sending the event. The consumer loop reads the touch data and determines how to
process the gestures to control either the multi-touch trackers, the picture, or graph control.

11, Registers & kst of controls to rontor for touches within their coordnates.
2. v e waved the graph indi rion of zcomi

ith gestures.

3. Loads image files fram disk i o ion cf changing i with gestures in pi X

4. Crestes & notifies far sending touch data from the user interface/event Ioop to the touch processing consumer locg,

5, Intalize the UPDD driver and create an event registration callback for touch data,

6. Turn off th port i don't overiide the 1.

7. Uzari Ieap used ta meni P i 3

J8. Touch procesting consumer laop that deciphers the tauch deta for swipe, z00m, and rotate and demonstretes how
this can be used within several tabs of 2 tab control on the front panel,

19.Turn the mause port interface back on to return mouse cantral.

110. Close the event and connection to the driver.

[L1. Destray the notifier which will case an eror in the cansumer leap which will stop the leop.

T{Ha Eror <P
[[7h5 s the user intertace and avent menitoring loop. It catches uses interface events as well a5 touch events
from the UPDD toolkit driver. Touch data i sent ta th for processing via a natdier.
o f Bl H B BH Bl
el i <hongt P thiched 10 ha beth ik
. H change Pan old so that
Bicture £ Bopiean] Fingers emust b closer than 600 units
Graph|2 Baciean] Perd (5% of screen size) tagether to register s pan
stop
Buttoni Pen2
Button?
Snappedéngle
Retation Tobs
e [+ Greph ~]—valisgnil
BothTouched o
BothTouched
P
g
o Points ~] This is th p which recen data from thy loop and processes the informaticn.
=
s El W Event]
= & Pen has moved wy position
W Zoom e <H]
Zoom” E “Picture” 'E
Ly Rotate -_L_ -
e || B
ZoomType H
PankDelts H i zoom
PanVDels [Z>—{safctation]
[eTebCantrol '
ot Cartrol |-
1 [»#Pic]
8 Ths VI Pic
]
[#Pane]- tor]
Pesi [FEcolean}
Pen2
- > graph siga»
B > >last touch datas>
[E-[2-- »»allow trackess>> ———f———— —i-]
ATabar} i
|

Page 13 of 15

UPDD Graph Example VI

Installed With: LabVIEW

Demonstrates how to use the UPDD API of the touchscreen toolkit to manipulate the x and y scales of a waveform graph. This example detects the zoom, rotate, and pan
gestures from the toolkit and modifies the scales of the graph control. This can be useful for improving usability of LabVIEW touch applications display data to the user on
the front panel and allowing the user to interact with the data as they would expect on a mobile device. These features are only possible with multi-touch capable monitors
that can detect 2 or more touch points simultaneously. This example has been specifically developed for use with a MIMO Magic Touch 10.1" Capacitive Touch monitor and
should be maximized on the monitor before running.

Use zoom contract/expand gestures to zoom the graph in and out. This effectively changes the scale and centers the zoom around the center point between the two touch
points. Place both fingers close together and move them around to pan the graph. Use a single touch along the graph to move the graph cursor.

b] Graph Example Llﬂlﬂ
o »y A
4 dl g s
L v & [l v b : a
) Zoom Out Sy Zoom In N Pan , Cursor
.| "I \ / ‘..' /
— .

-
6_
4_

w2

o

2

5 0

E

< 3
-4
-6
-8-|
_1°_I 1

0 0.05 01 015 0.2 0.25 03 0.35 04 045 0.5 055 06 0.65 07 075 08 0.85 09 0.95 l
Time
. Stop
!

The example uses one user interface loop that monitors for touch events from the touchscreen API through user events in the event structure. The x and y scales of the graph
control are modified directly in the event handler. This can be done if the processing of the gesture does not take a significant amount of time. During initialization in this
example, the touchscreen API has been configured to notify on every 5th touch event, which significantly reduces the number of events that must be handled by the user event
loop, therefore, this allows enough time to process the touch event directly in the event handler. It is advised to handle and process touch and gesture messages in a separate
loop or thread so that the user interface does not become unresponsive. The example here shows everything processed in the user event handler for simplicity, but more
complex applications would likely require processing of touch and gesture messages in a separate thread.

Page 14 of 15

[1. Writes a sample waveform to the gragh indicator for dernonstration of zooming with gestures

2. Initizlize the touch driver and creste an event regustration callback for touch data. Report interval is set >1

50 that the user event loog is not flooded with touch events since it is directly manipulating the graph in

the user event. Ideally, manipulation of front panel contrals is done in a separate thread or loop.

3, Turn On Swipe, Zoom, and Pan gestures, If necessary, gesture thresholds can be alse changed here using

the SetGesture Threshold viz.

. User interface/event loop used to monitor for button presses and receives touch data from the touchscreen driver.

5. On 3 towch mave event, determine if the gesture is 2 pan, z0am, or single touch move. If the gesture transitions fram
2 pan 1o 200m or 2oom to pan, the last graph range must be saved in “lastRange” so that the range is saved

2nd the graph does not jump when transitioning between gestures.

I6. On 2 pan event, move the gragh in proportion to the size of the graph so the data follows the users finger movement.
[7. On single tauch, control the graph cursar and map physical coardinates to the graph's data.

B. Close the event and connection to the driver.

i Erar
User interface loop
=] i i : User Evert P
< required 1o set the conversion Bl Event” <P LastGesture
rautine to map driver coardinates to o)
physical coordinates. E o =
i'UPDD Diriver : [
TouchData. ype
TouchDatatype |—i
TouchData Zoom
TouchData ZoomType
TouchData
TouchData PankDeita
TouchDataPanvDets “Zoom/fotate”, Default ~ E
TouchData left — I we went directly from zoom to
TouchData.awe pan then store the range
TouchDatarawy .
Graph[#WaverormGraph | H—H— I =
e — —a
! i =g a]2
ALactGestured}
& This VT
 Pane
i & = WrGraph (strict) &
1 i b
1 € fr
1 Area Height —’:b 4

UPDD Multi-Button Example VI

Installed With: LabVIEW

Demonstrates how to use the touchscreen toolkit to detect touch on multiple areas of interest on the front panel simultaneously using the UPDD API. A typical application
would be to detect touch of two buttons simultaneously to ensure operators hands are away from machinery before starting a dangerous piece of machinery. This eliminates
the need for external mechanical buttons. These features are only possible with multi-touch capable monitors that can detect 2 or more touch points simultaneously. This
example receives touch data from the UPDD driver API instead of the Windows Touch APIL. This is required for systems that do not have the Windows Touch API, like
Windows XP and Windows Embedded Standard 7 (WES7) without the Windows Pen and Touch Add-on.

Press any number of the 4 touch areas to see them detected simultaneously.

Iti-Button Exam

Touch each area with different fingers to demonstrate detection of multiple touch points simultaneously
*You must have a touchscreen capable of 2 or more touches for this demo

wll
d

. Stop

Page 15 of 15

Note: Some touchscreens only support 2 touches. For all 4 touch areas to be recognized simultaneously, you must have a touchscreen that supports 4 or more simultaneous touch points.
Refer to system properties to identify the number of supported touch points.

System
Rating: mWindnwsExperienceInda
Processor: Intel(R) Core(TM) i7-3840QM CPU @ 2.80GHz 280 GHz
Installed memory (RAM): 16,0 GB
System type: 64-bit Operating System
Pen and Touch: Touch Input Available with 16 Touch Peints

The example uses one user interface loop that monitors for touch events from the touchscreen API through user events in the event structure. The value property of the touch
indicators are modified directly in the event handler. This can be done if the processing of the gesture does not take a significant amount of time. During initialization in this
example, the touchscreen API has been configured to notify on every 5th touch event, which significantly reduces the number of events that must be handled by the user event
loop, therefore, this allows enough time to process the touch event directly in the event handler. It is advised to handle and process touch and gesture messages in a separate
loop or thread so that the user interface does not become unresponsive. The example here shows everything processed in the user event handler for simplicity, but more
complex applications would likely require processing of touch and gesture messages in a separate thread.

[L. Initialize the Windows Touch driver and create an event registration callback fer touch data,

12. Turn off all gestures so only W'y touch paints are reported through the user event,

3. User interface/event loap used to monitor for button presses and receives touch data from the touch driver.
M. For each unsque touch that occurs, save the coordinates and then determine which ones are in the bounds
of the registered controls/indicators, I any touches are within the bounds, change the value on the front
panel to indicate 2 touch within the seea.

[5. Close the event and the driver,
Mo Efror ~]
User interface loop
[L00HE] H[1] <coordinates>: User Event ~PT
W Button Event™ v
i =]
Pen Down Event T
P & o number of touch areas on front panel
TouthData Gesture Type |—— For number of touch points
TouchDatatype — - P E
TouchData.rawx
B Ha B ||| —eiomsmn 8
3 C:\Program Files\UPDD] TeuchData.Stylus
I Ly 1
z) 2,
- - = Bool (strict)
Bounds }
E L__Position _ spemsemmmmeeeed H-® i
@ :]
Area1[2Boclesn
Area 2|2 Boclesn

Area 3|8 Boolean
Area &[@ Boglean

